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An examination is made of the thermal state of a plane layer of gray gas injected into a turbulent stream
of high temperature gas flowing over a permeable flat plate,

Similarity-type formulations of problems are encountered both in examination of flow near a stagnation
point, and also in analysis of the lifting of the boundary layer by intense injection through a porous plate
[1]. The examination described relates to the following idealized formulation of the problem (Fig. 1a).

In a plane layer of gray absorbing medium, formed by plane-parallel diffusely radiating surfaces (1—
porous plate; 2—boundary of high temperature turbulent gas stream), heat transfer is accomplished by
radiation and convection of the layer normal to the surfaces and by molecular heat conduction. All the
physical and optical properties of the medium and of the boundary surfaces are assumed to be constant,
independent of temperature,

The temperature of the wetted surface of the specimen and also that of the fictitious surface defermining
the upper bound of the lift~-off region, are given.

Also assumed given is the velocity of the injected medium, which is constant throughout the entire lift-off
layer. This idealization appreciably facilitates our examination without in principle changing its features,

A very simplified examination of this problem was given in [2]. The special case of a medium with low
optical thickness was examined in [3, 4].

The problem was examined in [5] under the assumption that molecular heat conduction in the medium is
negligibly small.

In the formulation considered the generalized energy equation has the form
div q, 4-div q, +div E;; =0, (1)

Here q_ and qj are the vectors of molecular heat conduction and the convective heat flux, and E,; is the
spherical vector of the radiative heat flux:

div q, = — A2 T, div q; = pc, (W, grad T), div B = — 1,

where n is the resultant volume radiation density.

Taking into account the one-dimensional nature of the heat transfer and also that —n = dE/dy in this case, we

have
dT 2T dE
N i AW——@, (2)
with the boundary condition
I'="7,y=0 TI'="T, y=29. (3)

Here E is the resultant hemispheric radiation density. We note that in Eq. (2) wy = const inside the lift-off layer.
This assertion is well confirmed experimentally. The boundary problem thus formulated is reduced to a complex
functional equation for the dimensionless temperature field g = f(h) with characteristic parameters Npo and Noyes
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Here 6 is the dimensionless temperature; & is the dimensionless resultant heat flux density; h and h; are the
optical thickness and the layer thickness, respectively; Np, is a dimensionless parameter describing the radiative-
convective ratio in the total heat flux (the Boltzmann parameter); N,,, is a dimensioness parameter describing the
radiative-conductive ratio in the total heat flux; T, is some characteristic temperature; » is the radiation absorption
coefficient; A is the thermal conductivity of the medium.

The hemispheric resultant radiation density E(h) relative to the layer of gray nonscattering medium examined
is determined by the integral relation [6]

h No

E (k) = 241 () Eox— 24 (b) o + 2 {Es @ ¥ (b, D dg —2 { Es@ ¥ 1)L, (6)
0 h

W (h, 8) = Ko (b —0) + 245 () 2 Ky (€) — 245 (0) - Ka (e — D). (7)

W(C, B) = Ko (—h) — 241(0) 5L K3 (0) -+ 245 (1) 5 Ka (o —0) (8)
Ax () = 202 (K () — 2RoKs (ho) K5 (o — 1)

g () = 2 (K (hy — h) — 2Ry K (o) K () 9)

I

(K'n (z) = S eXP:};{ P«”"I%L‘ s D=1—4RRK? (ho), Eos = 50Ti4) .
0

Here A; =1 — Rj is the absorptance (R is the reflectance) of the boundary surfaces of the layer of injected gas;
and Eo,i is the hemispheric equilibrium (blackbody) radiation density; i=1, 2.

Under actual conditions surface 2, an imaginary interface between some semi-infinite layer of high temperature
gas and the injected layer of optically thick gas, is close, as regards its optical properties, to a nonreflecting surface
of an absolute blackbody (the turbulent core).

These circumstances will be taken into account below in specific analyses, where it is assumed that Ry = 0, Ay =
=1, or A, = &, where &, is the emittance of the oncoming gas stream. Nevertheless, for the sake of generality, we
retain the radiating system assumed above with gray boundary surfaces. For this reason we take into account later an
expression for E(h), represented as the integral relation of Eq. (6).

From term-by-term integration of Eq. (4), and taking into account the stationary nature of the heat transfer
processes, we obtain

dl q°
g = 4N o — &N R @ (B (q - sho) - (10)

Here q is the dimensionless total heat flux.

Integrating Eq. (10) with respect to h from 0 to h, and also taking info account the boundary condition of Eq. (5),
we obtain an expression determining the total dimensionless heat flux:

ha ha
¢ = {Nua(0:—8) + No §e<h) dh + - {© @ ai}- (11)
)

In computing the second integral we must take into account Eq. (6) and the appropriate rule for integration of the
integrand, After a series of transformations Eq. (11) can be written as follows:

he

0= b (s) + - 2No® (6) -+ ¥ (hoh) B° (1)) dh (12)
0
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(b (fo) = &ho™ (Vs (81— 0a) + Y2 (A1 (o) B5* — As (Ro) 05%))) -

Here
¥ (hoy k) = Ky (1) — Ky (ho— R + 2 4 (ho) % Ko (k) — 244 (ho) % Ky (ho—h), (13)
A3 o) = 5 (<5 — Ko (1) (4 —2Rs K (),
Aa o) = 5 (5 — K (ko)) (1 — 25 () (14)

Equation (12) allows us to compute the total heat flux over the surface of the permeable plate wetted by the
turbulent stream of high-temperature radiating gas, for the case in which the temperature distribution in the layer of
injected gas is known.

Determination of the latter is the main content of the boundary problem of Egs, (4) and (5), whose solution
reduces to the following formal integration of Eq. (10) with respect to h, over the range 0 to h:

h 1)
AN ao {0 Q) dL— 4o (@ () — 80) + (@ @ dg = gh. (15)
0 0

Using Eq. (12), and carrying out a series of similar transformations, we reduce Eq. (15) to a complex nonlinear
integral equation with respect to the dimensionless temperature:

hn

B() = a(h) +— § (2N (80— )0 ) + G (1, )04 ) 2. (16)
Here
=1 (<N, d=1 (>n,
a{h) =0+ 62;;61 h+ ﬁ(%l‘ 051 (R) + %“‘9-24){2 (h)>7 (17
G (h, §) = Ko (0) — Kalh—L |+ 7~ (Ks (ho— ) — K5 (0) +

2By K@ + 2 B Ky (e— 1), (18)

to (B) = Yy — Ki (B) =R (g — Ky (o)) + 2Ky (ko) 1K, (k) —
— Ky by — b) + hsh (y — Ky (b)) (19)

Yo (0) = Ki (o) — Ki (o — ) 4 e h (g — K, (b)) + 2R1 K (o) X
Yy — Ky (B) — kg (Mg _,K[’ (ho))1 . (20)

It is quite evident that an analytical examination of the integral equation (16), like the calculation of the
corresponding quadratures in Eq. (12), is very difficult, For this reason the whole of the following analysis of the
problem is presented with the numerical methods of solution included, as well as certain simplified methods, relevant
to determination of the most conservative integral function of the total heat flux.

The integral equation (16) is approximated by a system of nonlinear algebraic equation, which is solved by
Newton's numerical method. The corresponding integrals are approximated using the Gauss quadrature formula.
Because of the characteristics of the integrand expressions in Eq. (16), appearing when they are represented in
discrete form in the boundary region, it is expedient to represent the integral equation (16) in the following form:

Na
Npo

0 ={at+2 o @@—00m)— -0 ] az-

o
1

+av- \e@emnah(t—rge ). on

Some results of solution of Eq. (21) are shown below, relating to diverse variants of the values of the
parameters describing the optical properties of the porous plate R, (with R, = 0), the optical properties of the medium
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hy, the intensity Ny, of blowing of adsorbent gas, and also the radiative-convective ratio Ny, in the total heat transfer,

Figures 1 and 2 show dimensionless values of the temperature field in the blocking layer when the surface of the
porous plate is absolutely black, §; = 0.3, 6, = 1.0, and the radiative-conductive ratio parameter Ny, = 0.1 is evidence
that the role of molecular heat conduction in the heat transfer is not negligible,

In the case of small values of the parameter Ng,, representing weak injection, the nature of the temperature
distribution is in many respects reminiscent of the temperature field in a layer of absorbent medium, possessing
molecular heat conduction. However, even in this case, the effect of weak blowing in reducing the temperature level
of the blocking layer is noticeable,

With increase of the optical thickness of the blocking layer we note some increase of the temperature in the main
part of the layer adjacent to the cooled surface, and also a corresponding decrease in the layer adjacent to the hot
surface (Fig, 1b) in comparison with the distribution established in a layer of weakly absorbent gas.

Here, with increase of injection, the picture changes, the difference being that the region adjacent to the hot gas
is so much developed that the temperature of the optically thick gas (Fig. 1b) is lower than that in the layer of weakly
abgorbing gas over the whole blocking layer. A distinctive luminescence of the gas is produced in the cold layer region,
This becomes particularly noticeable in the gas layer with optical thickness hy ~ 1,0, when the interaction effects in
the medium are greatest,

For the case in which the surface of the porous plate has a high reflectance the general picture of temperature
distribution is retained, but the temperature level is increased, due to boundary reflection effects. Here a particular
rise of temperature is noticeable in the region adjacent to the reflecting surface (Fig. 2). Thus, representation of the
porous plate with a high surface reflectance, besides the effect of direct thermal protection from radiation, is
accompanied by a certain increase in temperature of the optically thick gas blowing through the layer.

Figure 3 shows dimensionless total heat flux as a function of the optical thickness of the layer, for various
values of Np . As we would expect, with increase of Ny, which describes the intensity of blowing, the total
dimensionless heat flux changes sign for certain values of h; and N_, . In other words, the surface of the porous plate
changes from a heat-receiving to a heat-liberating surface. For certain conditions the resultant heat transfer to the
layer is identically zero (q = 0). Figure 4 shows the relation Ng, = f(hy), describing the adsorbent-gas injection rate
required to maintain the indicated thermal insulation state, as a function of the optical thickness of the gas.

There is a sharply pronounced dependence of NB0 on hy in the region of relatively weakly absorbing gas, when the
insignificant amount of absorbing component in the gas permits a very noticeable increase in the flow rate of injected
gas. A highly reflecting surface (Fig. 4), when the optical density h of the blown gas is less than 1.0, is an effective
arrangement,

In practice we are interested in simplified treatments which allow approximate analysis of heat transfer in the
region of the line of boundary layer lift-off from the surface of the permeable plate. The above approach is based on
determination of the total resultant heat flux q, which, being an integral function of the temperature distribution, is a
conservative concept, so that, in determining it, we use an approximate, but quite reasonable, temperature
distribution.

Strictly speaking, the solution of Eq. (12) determines the total heat flux q over the porous plate surface. Being
constant in any section of the layer, the flux q, composed of conductive, convective, and radiative components, is
redistributed in complete accordance with the temperature distribution and the role of the various kinds of heat
transfer. Attention should be drawn to the additive form of Eq. (12) for q, where, in contrast with the solution for
calculating local q, there is a term representing molecular heat conduction in free form. This somewhat reduces the
error associated with bringing in the approximate temperature distributions.

Using a linear distribution for the equilibrium radiation:
8 (h) = B1* + (02* — 0, h/hg (22)

in determining the radiative component of the total heat flux, the expression for q can be written as follows:
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Fig. 1. Dimensionless temperature distribution in the blocking layer

for various values of NBO with 8, = 0.3, 6, = 1.0, N, = 0.1, A=Ay =

= 1.0 and with optical thickness a) by = 0.5 (solid lines), h; = 1.0 (dashed
lines); b) hy = 2.0 {solid lines), h; = 3.0 (dashed lines),
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Fig, 2. Dimensionless temperature

distribution in the blocking layer

with 6; = 0.3, 6, = 1.0, Ny, = 0.1,

Ay = 0.2, Ay = 1,0 and optical thick-

ness hy = 0.5 (solid lines) and h; =

= 1,0 (dashed lines), for various
values of N,
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Fig, 4. Np, as a function of the
optical thickness hy of the layer,
forq=0, ;= 0.3, 6, = 1.0, Ny, =
=0.1; Ay = A; = 1.0 (solid line) and
Ay =0.2, A, = 1,0 (dashed line), re-
spectively,
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Fig. 3. Dimensionless values of the

tetal heat flux q as a function of the

optical thickness of the layer, for

various values of NBo (6, = 0.3, 8, =

=L0, Ny =01, A=A, =10);

points 1 were calculated with Eq. (27),
and points 2 by Eq. (28).



4N, ANg, ¢
g = — = Ba—00) - 2 { 0k dh— Ay (ko) (05 — 0. (23)
0

Here Ajy(hy) is the resolvent optical and geometrical functional, which for gray boundary surfaces in general,
has the form
Ayg (ho) =2k (*ls— ko™t (Y2 — 2 K5 (Ro) -
+ 2 (13— Ky (ho)) (A1 (o) Ry + A, (ho) Ry))) - , (24)

Determination of the convective flux component is decided in many respects by the approximation for the temperature
distribution in the layer. It turns out to be of little use to take the relation

Nh__ N
0W =0t Ot Ty (V=32 (25)

as an approximate solution of Eq, (21) in a diathermal medium, It is more efficient to construct approximate solutions
valid in specific ranges of Ng.

For N, = 0.25, when the dynamic effects of convective transfer are of the same order as the radiative and
conductive effects (N ~ 1,0), the temperature distribution in the layer is determined to a considerable degree by the
radiative heat transfer, which is strongly coupled to the medium. In this case, in determining the convective
component of q in Eq. (23) we can use an approximate temperature distribution, determined as the arithmetic mean of
the distributions in a fixed, intensely absorbing medium

1— Ky (h
B () = By -+ (8, — B3) (26)

and in a moving, weakly absorbing medium, Eq. (25),
The formula then obtained, representable in the following form:
4 = 4o {0 — 5 [ — 1)+

i (= L B (0 — )] — s (he) (82— B2) (27)

is valid for hy = 1.0 and Np, = 0.4.

For Np, = 0.4 and hy = 1,0 it is better to use an approximate expression whose convective component is
determined in the approximation for the temperature distribution, which is taken as the arithmetic mean of the
distributions of fixed and moving, weakly absorbing media:

g = 4N o [ (6 -+ 30) —

— (7 + @ — 1)) € — B} — Aua () (05— 61%), (28)

The results of calculations according to Egs. (27) and (28) are in good agreement with results of numerical
solution of Eq, (12) (the error does not exceed 5%). In optically thin media the level of agreement of calculations
according to Eq. (28) increases (Fig, 3).

The similarity type of approximate solution, although trivial in concept is rather complex because the three
components of the resultant heat transfer are considered simultaneously.
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